
JOURNAL OF APPROXIMATION THEORY 76, 303-325 (1994)

Quasi-Interpolation Functionals on Spline Spaces*

CHARLES K. CHUI

Department of Mathematics, Texas A&M University, College Station, Texas 77843

AND

JIAN-ZHONG WANG

Department of Mathematics, University of North Carolina,
Charlotte, North Carolina 28223

Communicated by N. Dyn

Received June 3, 1991; accepted in revised form March 23, 1993

This paper is concerned with the structure of quasi-interpolation functionals on
the space spanned by exponential polynomial splines and their translates. The
existence of these functionals is guaranteed by certain conditions which are derived,
using the notion of commutators, and shown to be equivalent to some generalization
of the Strang-Fix conditions. Characterizations of quasi-interpolation functionals
are also formulated, and admissible sets for these functionals are given. Several inter
polation schemes are obtained through the quasi-interpolation functionals. © 1994

Academic Press, Inc.

1. INTRODUCTION

Quasi-interpolation functionals play an important role in the construc
tion of approximation formulas using integer-translates of compactly sup
ported functions. We first give a brief review. The following notations will
facilitate our discussion.

Let rx = (rx l , ..., rxs) E Zs+ be a multi-index, Irxl =L~~ I rx;, and VXE R S (or
EC-" where iC is the complex field), let Ilxll =maxI<;;i<;;s Ix;l. Also let
{ei}5~ 1 denote the coordinate basis of R S

• In this paper, we will always
assume that a function f is a map from R S into iC, and define, as usual,

(Jhf(-)=f(-/h), h>O;

r yf( . ) = f( . +y), Y E RS;
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and for any Fe C(RS), set
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F" := {f: (JnfE F}.

The Fourier transform of f is given by

](z)=! f(x)e-ixZdx,
RI'

Z E 1['.

Let Q e R" and denote, as usual, the supremum norm on Q by II lin. [n

this paper, we also need the following notations.

Ifkn = L IIDjlln;
1>1 ~ k

k

IlflkQ = I Ifli.n;
i~ 0

and
k

Kk.n(f, h) = L hi Jfli,n,
i~ 0

The space of entire functions in iC' restricted to R'O is denoted by lff, and the
collection of all polynomials denoted by 1!. The point evaluation functional
Ox is defined, as usual, by oJ=f(x). Now let ¢ be a compactly supported
function. Then space S(¢) it generates is defined by

S(¢) = span{ 1,6(. -:>:)::>:E Z'}.

DEFINITION 1.1 (Cf. [2, 8, 10]). An operator Q: Cd f-+ S(¢), where
Cd = Cd(R'), is called a quasi-interpolation operator of order n for ¢, if

I. Q is a local linear operator, where locality means that

supp(oxQ) e C(x, r)

for some r> 0 independent of x. Here, C(x, r) = {y: Ily - xii ~ r/2};

2. Q is locally bounded in the sense that 3c > 0 such that Vf E Cd and
xER',

I(b,Q)fl ~cllflld,C(x,r),

where c is a constant independent of x and f; and

3, Qp =p, Vp E 1rn _ 1, where 1!n _ 1 is a collection of all polynomials of
degree at most n - 1.
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Now let Qh = (JhQ(JI/h' The approximation power of the operator Qh is
described as follows (cf. [1-3, 5, 6], etc.).

THEOREM A. Suppose that Q c RS is an open and convex set, and A c Q

is a compact set. Let Q: Cd f-+ S(¢J) be a quasi-interpolation operator of
order n for ¢J, and

p = P". d := max(n, d).

Then 3cQ > 0 such that VfE CP,

(1.1 )

A natural approach to constructing quasi-interpolation operators is via
quasi-interpolation functionals ([9, 11, 14], etc.). We will use the following
definition (cf. [10]).

DEFINITION 1.2. A linear functional A on Cd is called a quasi-interpola
tion functional order of n for ¢J if

(1) it is local, i.e., supp Ac qo, r) for some r > 0;

(2) it is bounded, i.e., 3c>0 such that VfECd, I,VI~cllflld.C(o,r);

and

(3) for any pEn" _ I'

p(x)= L Ap(-+j)¢J(x-j).
jEZS

It is easy to see that a quasi-interpolation functional A always generates
a quasi-interpolation operator Q. Also, sufficient conditions for the existence
of quasi-interpolation functionals are available in the literature. In par
ticular, the following set of conditions is usually attributed to Strang and
Fix (cf. [6,21]),

J(O) #0,

D'J(2nj)=0, VjEZS\{O}, lexl <no

Various approaches to constructing quasi-interpolation functionals have
been studied (cf. [2,3,5,9,10,14]).

Observe that in fact the operator Qh realizes the approximation order of
the family of spaces
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with rPh = (JhrP, where the approximation order describes a "distance"
between the space Cd and Sh (rPh)' Since the common subspace contained
in all the spaces Sh(rPh), h > 0, must be a subspace of the space of all
polynomials, the Strang-Fix condition is important for describing the
approximating ability of Sh (rPh) here. However, if we are not restricted by
the definition <Ph = (JhrP but instead, allow <Ph' h > 0, to be a family of
functions then the situation will be quite different. A typical example is the
exponential box spline setting, where the original version of Strang-Fix
condition is not applicable. Discussion of exponential box splines can be
found in [4,7,15-17,19,20], etc. The essential questions are as follows:
Which space is contained in all the spaces S(<Ph), h > 0, and What
approximation order does this family of spaces achieve? We will discuss
these problems in a more general setting.

DEFINITION 1.3. Suppose that 0< h ~ 1, and k is a certain non-negative
integer. Then l/J = {rPh)O <h" I c Ck(R') is called a G-family if there exists a
positive number r such that supp <Ph C C(O, hr) and

IlcPll : = supil rPh II < +00.
h>O

Furthermore, if, in addition,

inf IJh(O)1 h-s>O
h>O

we call cP a regular G-family.

Later if no confusion would arise, we will omit h when h = 1. In this
paper we mainly consider the local approximation properties of the family
of spaces Sh( rP h) generated by a G-family l/J as well as quasi-interpolation
functionals for this kind of approximation. In Section 2, we shall give a
precise definition of quasi-interpolation operators of order n for l/J as local
linear operators Qh: Cd't--'> SdrPh) which enable us to achieve the local
approximation order n for any fECI' (cf. (1.1) for the definition of p). It will
be seen that the definition of quasi-interpolation functinals for cP can then
be formulated quite naturally. In Section 3, using the notion of com
mutators (cr. [8, Chap. 8]), we obtain conditions that guarantee the exist
ence of quasi-interpolation functionals for cP. We will also prove that these
conditions are equivalent to certain conditions on the Fourier transform
of rPh' generalizing the Strang-Fix conditions (cf. [17]). Characterizations
of the quasi-interpolation functionals for a G-family are given in Section 4.
In the final section, we deal with admissible sets for quasi-interpolation
functionals, which were first discussed in [10]. We will also point out the
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relation between the dual spaces for Sh(,ph) 11 tff and admissible sets. As an
application, we study the boundedness properties of the dual basis for the
space of integer-translates of an exponential. box spline.

2. QUASI-INTERPOLATION FUNCTIONALS FOR A G-FAMILY

For h > 0, a subspace of C(R') is called an h-translation invariant space
if

f E H => T ± hodE H, }=1,2, ... s;

and H is called a translation invariant space (TIS) if it is h-translation
invariant for any h > o.

Let if> be a G-family and H(,ph):= Sh(,ph) 11 $. If 3ho > 0 such that Vh,
with ho~ h > 0, H(,ph) = H(,pho)' then H(,pho) is a finite dimensional TIS,
which has a fairly simple structure as described in the following theorem.

THEOREM B [4]. If H is a finite dimensional TIS, then H c E, where E
is the space spanned by all exponential polynomials.

Later when we consider an arbitrary TIS, we always assume that it is
finite dimensional. Recall that a TIS can be decomposed into a direct sum
of several translation invariant subspaces ([4,7], etc.). Let

e = {(J E iC : exp( (J . x) E H}

be the set of eigenvalues of H. Then

where He = {e(Jxp:pEPe }, with Pecn, is a TIS.
Setting dim H(J = n(J, d(J = deg H(J := deg P(J := maxpE Po degp, we call (J a

simple eigenvalue if deg H(J = 0; otherwise, it is called a multiple one. It is
obvious that V(J E e and I, with d(J ~ 1~ 0, P~ = Pe 11 n' is a TIS. Hence, we
can choose a basis {pJ};: 1 of P(J such that for any I, {pf };~ 1 11 n, is also
a basis P~. Then we shall call {ee xp1};~ 0 a canonical basis of He and

U {el/xpn;~l
I/EB

a canonical basis of H.

DEFINITION 2.1. Let k be a non-negative integer, A an n-dimensional
space of complex linear functionals defined on Ck(R'), and PJ;= 1 a basis
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of A. A space He Ck(R') is called A-poised if for any {Yj }7~ 1 E en, there
exists a function g E H such that .

j= I, ..., n.

We will specify this property of H by writing HE /(A). Additionally, if
dim A = dim H, we write HE /d(A). Later we will use the notation

F* = {bop(D): p E F},

where F is any subspace of n.

DEFINITION 2.2 Let H be a TIS. A family of linear operators
{Qh }h>O : CdH Sh(¢Jh) is called a family of H-reproducing operators for a
G-family cP if, for any h > 0,

(1) there exists a positive number r, independent of h and x, such
that

SUPP(bxQh)C C(x, hr);

(2) Qhf= f for any fE H.

(2.1 )

If HE/(n:_d, then we say that Qh is of order n. Furthermore, if
{Qh } h > 0 satisfies the uniform boundedness condition

(2.2)

where c is a constant independent of f and h, then we call {Q h } h > 0 a
family of quasi interpolation operators.

For convenience, we will also say that "Qh is a quasi-interpolation
operator." The following theorem explains the meaning of the above defini
tion. It can be proved essentially in the same way as in [16,19].

THEOREM 2.1. Suppose that Q c R' is open, A c Q a compact set,
Qh : Cd H Sh(¢Jh) a quasi-interpolation operator of order n for a G-family cP,
and p = Pn. d as defined in (1.1). Then Vf E CP,

where c(J is a constant independent on f and h.

We remark that upper bound estimates for the approximation from
Sh(¢Jh) can be found in [19]. Let us now introduce the concept of quasi
interpolation functionals for a G-family cPo
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DEFINITION 2.3. Let H be a TIS. A linear functional Ah on Cd(RS) is
called an H-reproducing functional for a G-family cP, if

(1) 3r > 0, independent of h, such that

supp )'h C qo, hr);

(2) for any fE H,

f(x) == L )'hf(· +j) tj>h (x -j).
je hZ·I'

We also say that )'h is of order n, if HEI(n:_ 1 ). Furthermore, if

(3) )'h is uniformly K-bounded with respect to h; i.e.,

(2.3 )

(2.4 )

(2.5 )

where c is a constant independent on hand f, then we call Ah a quasi-inter
polation functional.

It is obvious that any quasi-interpolation functional )'h generates a quasi
interpolation operator Qh'

3. COMMUTATORS FOR A G-FAMILY

Following [8, Chap. 8], we introduce the definition of the h-commutator
of a compactly supported generator IjJ E CarR') (cf. also [2, 7, 12, 13,22]).

DEFINITION 3.1. The h-commutator of a compactly supported function
IjJ E Ca(R') is an operator on qR') defined by

[1jJ!f]h(X)== L ljJ(x-j)f(j)- L f(x-j)IjJ(j),

Using the notation

T;I](x) == L rfi(x - j) I](j),
jE hZ'

fE qRS).

where tj>ECa(R') and I]EqR') (or tj>EC(W) and I]ECa(W)), we can
rewrite the above as

[1jJ IfJh (x) == T~f(x) - TjIjJ (x).
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In the following, we shall see that h-commutators play an important role
in the investigation of the properties of a G-family. To study these
operators we first introduce certain differential operators. Let ([I be the
space of functions analytic at the origin. For fE (17, we define an operator
f(D): n~n by

If fE~ (or EE, or En), then the operator f(D) can be extended to E
(or ~, or (D, respectively). Observe that for any gE~, we have
eO Dg(- ) = g(z + '), and thus the operator eZ

D is identified with r Z" We
extend eO D to C(R') by using this formula. More generally, if
f = LZEA eZ

(Ipz ' where A is finite subset of C and pz En, then f(D) is
well defined on (['(A) = {j:f('-Z)ECn,ZEA}. On the other hand, if
d=max ZEA degpz, thenf(D) can also be extended to Cd(R') as mentioned
above.

Now if f is fixed in some space ((17,~, E, or n), then. the functional
(jxf(D) is well defined in the corresponding space just mentioned. We set

<f, g) := (f( - iD)g)(O) = (f( - iD)g)(x)lx=o,

Later when we consider <f, g), we always assume that f and g are in
suitable spaces so that <f, g) is well defined.

LEMMA 3.1. Let g(x)=ellxp(x), pEn and t/JECo(R'), such that
{(g(iD) ¢)(2nj)LEz,E/'(Z'). Then

[glt/J](x)= L [(g(x-iD)¢)(2nj)](e27tijX -I). (3.1)
jEZ S

Proof It follows from [8, Theorem 8.2] that (3.1) holds for 8 = O. Now
if 8#0, by setting tjJ(x)=e-IIxt/J(x), we have tjJECo(R') and
{(p( - iD) ~)(2nj)} E /

1(2'). Then

[gl t/J ](x) = ellx[p It/J](x)

= ell X L [(p(x-iD)~)(2nj)](e2rrij,x_l)
je z-~

= L [(g(x - iD)¢)(2nj)](e2rriiX - 1).
jeZ S

THEOREM 3.1. Let H be a TIS with eigenvalue set e. Then the following
statements are equivalent.
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(a) ForanygEHe,8E8,

g( -ihD) Jh( /h )12nj = 0,

(b) ForanygEHe,8E8,

(c) For any eE e,

r;h(He) c He.

Proof First we observe that

VjEZS\{O}. (3.2)

(3.3 )

(3.4 )

Hence, without loss of generality, we may assume that h = 1.

(3.5)

(i) (a) <:;. (b).

If (a) holds, then (3.2)=> {(g(-iD)J(2nj)}E/ 1(ZS). By Lemma 3.1,
recalling that H o is a TIS, we have [g I~] = 0, i.e., (b) holds.

If (b) holds, then since g E H 0 => gA . ) := g(. - x) E H 0, we have, by (3.3),
[gx I rjJ J= 0, "Ix E R', i.e.,

L g(j-x)rjJ(x-j)- L g(-j)¢J(j)=O. (3.6 )
jEZ S jeZ S

Now let u be an arbitrary rapidly decreasing function. Then

l/!(t) = fg(t - x) r/J(x- t) u(x) dx

is also rapidly decreasing. By (3.6) and applying the Poisson summation
formula to ljJ, we have

L: g(-j)¢JU)u(O)=f L g(j-x)¢J(x-j)u(x)dx
jEZ S jeZ,f

= 1: [(g( - iD) ~)(2nj)] u(2nj).
JEZ·1

Since u is arbitrary, assertion (3.2) holds.

(ii) (b) <:;. (c).

That (b) => (c) is trivial. On the other hand, if (c) holds, then
[g I¢J J(x) E HI), Vg E HI). Since any nonzero function in HI) cannot vanish
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on Z', it follows that the condition [g I ¢ ](j) = 0, Vj E Z" together with the
condition [g I¢] E HI! implies [g I¢] = O. Hence, (c) = (b) also holds.

COROLLARY 3.1. Let H he a TIS. If [g I tPh]h = 0, Vg E H, then

VXER', gEH, (3.7)

where t/Jh = Ul/h¢h.

Proof That (3.2) holds is a consequence of [g I¢h] h= 0, Vg E H. This in
turn yields that

(Ulil,g)( -iD) ~h (i;)I. =2"j =0, VjE Z' {O},

which, in view of the fact that H is a TIS, implies that

VjEZ' {O}.

Applying the Poisson summation formula to the function
tPhUh) g( (x - . )/h), we obtain

fEhZ,I' jEZJ

/'-.-
= (U1ih g)(x - iD)(Ul'htPh)(O)

= <U I/h g(x + .), ~h)·

On the other hand, by applying [g I tPh]h = 0 we have

(U1/hT;hg)(x)= I tPh(hx-j)g(j)= L g(hx-j)tPh(j)·
jEhZ5 jEhZ)

Hence, we obtain (3.7).

The commutator property (3.3) is usually called the set of Ho-vanishing
conditions of the h-commutator for ¢h' We remark that when Ho is a space
of all algebraic polynomials, these equivalent statements are well known
(d. [8]). We are now ready to establish the following main result of this
section.

THEOREM 3.2. Let (/) he a regular G-family and H a TIS with eigenvalue
set e. Then for any sufficiently small h > 0, the following statements are
equivalent:
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(a) For any gE Hf),(JE e,
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'v'jEZS{O}.

(b) ForanygEHf),8Ee,

(c) T;h is an automorphism on Hf), 'v'8 E e.

(d) There exists a quasi-interpolation functional A. hfor Hand C/J.

Proof By Theorem 3.1, we only need to prove (b) => (c) and (c)~ (d).

(i) (b)=> (c).

It has been shown in Theorem 3.1 that (b) implies

I e f)j¢Jh(J) = ~h( - ih8),
jEhZ·I'

(3.8 )

where t/J h= (J l/h¢Jh' Now, that the regularity of C/J implies infh> 0 It/J h(O)1 > O.
f:.Ience, there exits a constant p > 0 independent of h, such that
t/J h(Z) # 0, 'v'Z E C(O, p). Since e is a finite set, there exist some ho > 0 and
c > 0, such that 'v'h with ho ~ h > 0,

Since deg(g(x-j)-g(x)e- Oi ) <deg g, 'v'gEHf), we have

1 h
g(x) - A T¢ g(x)

t/J h( - ih8) h

= A 1 (I g(x) e-f)·j¢Jh(J) - T; ¢Jh(.X))
t/Jh(-ih8) jEhZ'

= AI. L (g(x)e-f)j-g(X-j))¢Jh(J)
t/J h( - lh8LE hZ'

=> deg(g(X)- A 1 T~ g(X)) <degg(x).
t/Jh( -ih8) 'l'h

This together with the fact that nh (H f) ) C H0implies (c).

(ii ) (c) => (d).

(3.9)

(3.10)
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We will use the Neumann series approach introduced in [11]. (Also,
cf. [7, 16, 19], etc.). Write

Phil = (~( -ih8))-1

and set

qh(X) = 1- TI (1 - PhIlX)do+ I.
oE (j

By (3.10), we have

(I - P T h )dO+ 1 g = Q
hll ,ph '

where I is the identity operator and do = deg H o. This implies that
q(T~h)g=g, VgE H.

Denoting the cardinality of qo, r) n ZS by J, we obtain

(3.11 )

and that supp <>x T~h C qQ, 2hr). Since q(x) is a polynomial that vanishes at
the origin, we conclude that Qh = q(T~h) is a quasi-interpolation operator
for cPo Now let bh(x) = qh(X)/X. Then bh (x) is also a polynomial and

This means that

VgEH.

on H. (3.12)

Note that rkT~h=T~hrk> VkEhZ', so that rkbh(T~h)=bh(T~Jrk>
Vk E hZs

. This allows us to define Ah by

(3.131

which has the property that

AJ(· +j) = (b h( T~h )f)(j)·

Hence, Ah is the quasi-interpolation functional related to Qh'

(iii)(d) => (c).

This is a direct consequence of the fact that
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In Section 3, we obtained conditions that guarantee the existence
of quasi-interpolation functionals for a G-family (/J, with one of such
functionals given by (3.13). In this section, we shall give several character
izations of these functionals. We always assume that H is a TIS and (/J is
a G-family. Also, the H-vanishing conditions of h-commutator for ¢lh E (/J,

namely,

VgEH,

will be denoted simply by

(4.1 )

Recall that the equivalent statements in Theorem 3.2 hold for all suf
ficiently small h > O. For convenience, when we mention the condition (4.1)
later, we always assume that h is so small that these equivalent relations
hold.

Let A~ denote the set of quasi-interpolation functionals for (/J. The
following theorem tell us that VA~, A~ E A~,

VgEH.

THEOREM 4.1. If [HI (/J]h=O, then VAhEA~,gEH,

Ah( T;.g)( . + x) = g(x).

In particular,

Ahg=(T;.)-1 g(O)=bh(T;.)g(O).

Proof Since [H I (/J]h = 0, Vg E H, we have

L g(x +y - j) ¢lh(J) = 1: g(J) ¢lh(X +y - j)
je hZS jE hZ.i

(4.2)

(4.3 )

and, considering that gy(x):=g(y+x)EH for any fixed yER S
, we also

have

L g(x + y - j) ¢lh(J) = L g(y +j) ¢lh(X - j).
jehZ' jehZ'

Thus,

L g(y+j)¢lh(X-j)= L g(j)¢ln(y+x-j), (4.4)
je hZ' je hz'
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and it follows that
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Ah(T;h g )(· + x) = L )~hg(· +j) rPh(X - j) =g(X).
jEhZ'

Hence, assertion (4.2) is verified. Also, (4.3) follows by applying (4.2) and
(3.12).

Note that the value of (T;h) - I g(O) is independent of the individual )'h'

and this implies that VAL, )~~ E A~, g E H, ALg = A~g.

Now we shaH give another characterization of A~. Since H is finite
dimensional, we can characterize A ~ in terms of a basis of H. Let
~ = {~j };:: 1 be a (canonical) basis of H. Using the property (3.10) and the
fact that T;h is an automorphism on H, we conclude that

is also a (canonical) basis of H, VAh E A ~,

j= 1,2, ..., m. (4.5)

In the following, we give certain recurrence formulas for determining
{~J;:: I from {tJJ;:: I'

THEOREM 4.2. Let H be a TIS with eigenvalue set e, <t> a G-famity
satisfving [HI<t>Jh=O, {1]~}aEAo a canonical basis of H(} which is assumed
to satisfy 1]~o = eO ("J, Gt o E A(), and P~} H Au a dual basis of {tJ~LEAn' Then
the following recurrence formulas holds for ~~ = (T;h) -I tJ~,

(4.6 )

"",here

Proof That ~~o = PhlltJ~o is trivial. Let

Then

II Th -() (Th 0) " 01] a = ,ph tJ a = Phil ,ph tJ a - 1... a p1] fJ .
/IE Bla)
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Since {).~} H Ao is a dual basis of {'l~} H Ao, it follows that

ap = - PhIlA~(T~h'l~),

317

which is simply (4.6).

Next, we shall establish a theorem characterizing A ~ via the Fourier
transform of <Ph' The following lemma is needed for this purpose.

LEMMA 4.1. The following statements hold:

(a) <f,g)=<g,f).

(b) Let gf(X) = <f,g(x+ .». Then <h,gf) = <hI, g).

Proof Statement (a) is trivial and statement (b) follows from the
relationship

<hI, g) = hf( - iD)g(O) = h( - iD)[f( - iD)g ](0) = <h,f( - iD)g)

= <h, gf)'

THEOREM 4.3. Let H be a TIS and if> a G-family satisfying [HI if>]h =0.
Also, let t/J h = a I/h ¢Jh' Then Vh > 0, ~;; I is analytic in the ball qo, p), where
p is a positive constant independent of h. In addition, VA.h E A ~ and g E H,

(4.7)

Proof Since if> is a G-family, the family {~h} h> 0 of entire functions is
uniformly bounded, and hence, equicontinuous, on any compact set. Recall
that ~h(Z) ¥ 0, Vz E C(O, p) for some p > 0 (cf. the proof (i) of Theorem 3.1 ).
Hence ~;; I (z) is analytic in qo, p). Since the eigenvalue set of H is
finite, it is clear that <lit h- I, a I/h g) is well defined for all g E H as long
as h is sufficiently small. Now we are ready to prove (4.7). VgEH, write
g = (T:h) - I g. Since [H Iif>] h = 0, it follows by applying Corollary 3.1, that

A_I A_I h- A_I _
<t/Jh ,al/hg)=<t/Jh ,alih(Th.g»=<t/Jh ,(al/hg),frh>

= <~;; I ~ h' a I/h g) = g(O) = (T:
h

) - I g(O).

Thus (4.7) is a consequence of (4.3).

5. ADMISSIBLE SETS FOR A G-FAMILY

In this section we focus our attention on the study of expansions of
quasi-interpolation functionals on admissible sets. First, let us briefly
explain the main idea.

640,176/3-3



318 CHUI AND WANG

Let H be a TIS, </J a G-family such that [HI</J]h=O, and A~ the set of
quasi-interpolation functionals for </J. Now 'rI)'h E A~, we define f.Jh = A.h(Jh'
By Definition 2.3, we can see that f.Jh satisfies the following conditions:

(a) 3 r > 0, independent of h, such that

supp f.Jh C C(O, r).

f(x)= I f.Jhf(·+j)t/!h(X-j),
jEZ S

(5.1 )

(5.2)

where IjIh = (Jl/htPh'

(c) If.Jdl ~c IIflld,C(O,r), (5.3 )

For convenience, we call f.Jh a co-quasi-interpolation functional (for </J)
and denote f.Jh E M~ := A~(Jh' By (4.3), we can characterize M~ as follows.
'rIf.JhEM~,

f.Jhgh= bh(T~J gh(O) = [bobh(T~J]gh, 'rig E H.

By (3.9) and (3.11) (recall that </J is a G-family), we see that the func
tionals bobh(T~h) are uniformly continuous on Co(R S

) with respect to
h> 0. Since J1.h satisfies (5.1), we can choose a fixed set of functionals
PJ7'~ I' such that supp Ai c H*, in order to obtain the representation

m

J1.h = L aJ )'i'
i=1

Thus, the property of f.Jh is mainly determined by {aJ}. These types of
functionals are called admissible, first introduced in [to] for the study of
quasi-interpolation functionals on the spaces spanned by integer-translates
of box-splines.

In this section, we will restrict our attention to functionals A of differen
tial type, defined by

(5.4 )
IE I

where Yj E R S
, P j E 1f and I is a finite set. Let

Pj(x) = L cijxi .
0,;; iii ,;;d,

Then

A= L by; L: Cij Di.
j E I 0,;; Iii,;; d;
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So, be setting

111..1.111 =max{ le,/I, °~ UI < d j , i E I},

and

d=deg A= max deg Pi'
ie I

we have, VfE Cd(RS),

IAfl ~ c 11/..1.111 Ilflld,qO,r),
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(5.5)

where Yi E qo, r), i E I, and c is a constant independent of {cij}'
Later the set of all functionals of differential type will be denoted by r.

DEFINITION 5.1. Let H be a d-dimensional TIS and (/J a G-family such
that [HI (/J]h = O. A linear independent set A = {Aj }1~ Ie r is called an
admissible set (with respect to H for (/J) if there exists a co-quasi-inter
polation functional I1h E span A.

It is obvious that within the span of A, the co-quasi-interpolation func
tional for (/J is unique. Now we give a sufficient condition for a subset of
r to be admissible. First, we need a lemma which is a direct consequence
of [4, Theorem 1.2].

LEMMA 5.1. Let H be a TIS. There exists a unique subspace 11:He 7t with
dim 7tH = dim H, such that each p E 7t H is a limit in the COC(K') topology of
some family {fh :fh E H h}, as h -+ 0.

Our result on admissible sets can be stated as follows.

THEOREM 5.1. Let H be a TIS, (/J a G-family such that [H/<P]h =0, and
A c r satisfying 11: H E IAA). Then A is an admissible set with respect to H
for (/J.

Proof Write A = (Aj}1~1' where d=dim H. Since 11: H EId (A), there is a
basis {pj}1~1 of nH such that ..1.j Pk=(jj.b l~j, k~d. For any Pk' we
choose 17Z E H h so that 17Z -+ Pk in the C:O(RS) topology as h -+ O. Then

1 ~j, k ~ d. (5.6)

Write M h=(..1.j '1Z)J<;;j.hd' Then by (5.6), we have limh~oMh=I, so
that

(5.7)

for all sufficiently small h > 0, where C 1 is some constant independent of h.
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Next, we consider the sequence S~={bh(T~h)IJJ(O)}f=l' Recall that
supp(bobh( T~J) c qo, r) for some r > °independent of h, and {bobh( T~h) }
is uniformly bounded on Co(R'} Hence there exists a constant C2 > 0, such
that

d

L: Ibh(T~J IJ~(O)I :%; c2 ,
j~\

and consequently

d

L Ibh(T~J pj(O)1 :%; c2 ,
j~1

for all sufficiently small h > 0.
Now set a h = (Mh)-I s~ and I1h=Lf~1 aJ)'j' Then

d

11111hlll:%; max lilA; III I la~1 :%;C I C2 max 111),;11I
I ~j ~ d j ~ I I ~; < d

and

d

I1h1/~ = L aZAklJJ = bh(T~h) 1/;(0).
k~l

This means that fl.h is a cO-Quasi-interpolation functional for (/J.

Theorem 2.1 tells us that if HE l(n: d, then a quasi-interpolation can
be used to achieve the approximation order n. A particular (and useful)
case is HE IAn:_ d (i.e., dim H = dim nn _ I)' In this case it is easy to verify
that nH =nn \.

COROLLARY 5.1. Let HEld(n:_ 1 ), (/J a G-Jamily with [HI(/J]h=O, and
A c r satisfying nn-l E Id(A). Then A is an admissible set.

In general, the limit space nH of H is not easy to find. But if t/J h = (J I/h ¢J"
is uniformly convergent to some function t/J( . ), as h - 0, i.e.,

then supp t/J c C(O, r), and ~h ---+ ~ in the 6"-topology. This, in turn, means
that ~ h is uniformly convergent to ~ in any compact set in C' as h ---+ O. It
therefore follows, by applying (3.2), that

f~(O)#O,

lp( -iD) ~(2nj)=0,
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Hence, n H = n n S(ljJ):= n"" where

S(ljJ) = span{ljJ(·- j);jE ZS}.
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This means that Sh( ¢J h) and S( ljJ), as well as the quasi-interpolation
functionals for ([J and for ljJ, are intimately related as follows.

THEOREM 5.2. Let H be a TIS, If> a G-family such that [H I ([J] h = 0, and
ljJ h= (J l/h¢Jh be uniformly convergent. Also, let A be an admissible set with
respect to H for ([J. Then the co-quasi-interpolating functionals tth E span A
are convergent in the norm III . III, as h ~ 0, and their limit tt is a quasi-inter
polation function for ljJ.

Proof Let n", = n n S(ljJ). Then dim n", = dim H. Write A = PI }1= I' As
in Theorem 5.1, we choose {pj}f~1 en", and {~n1~1 eHh

. Since ~J ~Pj

in the CCO(RS) topology and ljJ h~ ljJ uniformly as h~ 0, we obtain

where b(x)=x-l(l-(l-x/~(O))d) and d=dim H.
As in Theorem 5.1, we set a h = (Mh

) -I s~. Then

Defining
d

tt= L Ajb(T~)pj(O),
j~l

which is obviously a quasi-interpolation functional for ljJ, we obtain

lim III tth - ttlll = O.
h_O

As an application of Theorem 5.2, we discuss the dual basis of integer
translates of an exponential box spline. Let X = {x I' ... , x" } e RS ..•.. {O },
tt = {ttl' ..., tt,,) E C", and X" = {(xj ' tt) Ix j EX, J.Lj E C}. Then the exponen
tial box spline Bh(·1 X,,) is defined to be the linear functional on LI~C<RS),

namely,
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When /-l = 0, h = 1, we have the polynomial box spline B(·I X). For sim
plicity, we will later write ¢h = Bh( ·1 X/,) and l/J = B(·j X). If

span(X\ {x j } ) = RS, 1~ i ~ n, (5.8 )

then ¢h ECo(RS) and {¢h}h>oforms a G-family.

Remark. When we study exponential box splines, we usually assume
that span X = R S

, in order that ¢h is a regular function. Under this assump
tion, if (5.8) does not hold, then ¢ h can be studied by direct calculation or
regularization (cf. [18]). Hence, in this section we always assume that (5.8)
holds.

Under the condition (5.8), it is known that

(5.9)

Now we turn to the discussion of the dual basis for the exponential box
splines.

DEFfNfTrON 5.2. A system of functionals {;.J LE hZ' is called a dual basis
of {¢h( . - j) LEhZ" if it satisfies

Vj, kEhZ'.

To construct a dual basis, we first select a functional ;.h that satisfies

(5.10)

and set ).J =).h'Cj , jEhZs
• Then {AJ} is indeed a dual basis of {¢h(--j)}.

We shal call ).h a dual functional.
Recall from (4.4), that

L g(y+j)¢h(X-Z)= L g(X+j)¢h(y-j),
jEhZ' jEhZ'

VgE H.

Thus, it follows that a dual functional for ¢h is also an H-reproducing
functional. We recall the following result from [15,17].

THEOREM C. Suppose that ¢h satisfies the following conditions:

(1) ~h(-i()lh)"IO,

where e is the eigenvalue set of H, and

(2) Xc Z'\ {O} is unimodular.

(5.11 )

(5.12)
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Let n H be the limit space of H as in Lemma 5.1. Then if for any
t E Int [x], there exists a unique polynomial q~ E nH such that the functionals
).j, given by).j :=(j/+iq~(D)(Jl/h'satisfy ).Nh(·-k)=bi,k, V),kEhZs

•

As pointed out in [4], (5.11) automatically holds for all sufficiently small
h > 0, and ).h := o,q,(D) (JI/h is an H-reproducing functional for <Ph as long
as (5.12) holds.

However, an H-reproducing functional needs not be a quasi-inter
polation functional, unless the uniformly K-bounded condition (2.5) holds.
By using Theorem 5.2, we obtain

PROPOSITION 5.1. Suppose that (5.12) holds and q/ E Tt H is chosen as in
Theorem C. Then the functional ph = b,q~(D) is uniformly bounded, namely,

III Jlh III ~ c.

Furthermore, q~ -+ q / E n H in the eoc topology as h -+ 0, and

VkEZS
• (5.13 )

Proof Let {Pi}f= I be a basis of nH' Then for any t E Int [X], we have

1 ~k, j~d.

By Theorem 5.1, A = {b,Pj(D)}f=1 is an admissible set with respect to H
for l/>, and thus there exists a unique Jlh E span A which is a co-quasi
interpolation functional for <p. It is easy to check that there is a unique
Hh-reproducing functional in span A. Since b,q~(D) is a Hh-reproducing
functional in span A, it must coincide with Jlh' The rest is a consequence of
Theorem 5.2 and the fact that if X is unimodular, ql E Tt", with b,q,(D)
being a n",-reproducing functional, then (5.13) holds (d. [17]).
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